Short Course on Air Quality Forecasting

- Introduction, p. 5
- Air Quality and Meteorology, p. 19
- Obtaining and Interpreting Forecast Information, p. 61
- Developing Forecasting Tools, p. 84
- Forecast Verification, p. 121
- Daily Forecast Operations, p. 131

Course Objectives

Overall: Give you the necessary knowledge to develop, implement, and evaluate a <u>basic</u> forecasting program

- Understand the meteorological processes that affect pollution concentrations.
- Learn how to use and evaluate meteorological forecast data.
- Discuss how to develop tools to forecast air quality.
- Present procedures for verifying forecasts.

Short Course: Design Goals

- Focus. Forecasting air quality. Primarily ozone, but approach also applies to other pollutants.
- Practical. Beyond theory, the course contains practical advice and reference to examples, tools, and methods.
- Gateway. The course workbook is a gateway to additional resources.
- Evolving. First time course, will improve in time through your feedback.

Outline of Course (Morning)

- Introduction (9:00-9:15)
 - Forecasting philosophy
 - Background air quality
- Air Quality and Meteorology (9:15-10:45)
 - Pollutant formation (ozone)
 - Diurnal ozone profiles
 - Air quality characterization
 - Basic meteorology
 - Surface
 - Aloft
 - Examples
- Break (10:45-11:00)
- Obtaining and Interpreting Forecast Information (11:00-12:00)
 - Resources
 - Examples of meteorological features

Outline of Course (Afternoon)

- Developing Forecasting Methods (1:00-2:00)
 - Evolution of forecasting programs
 - Climatology
 - Description of forecasting methods
- Verifying Forecasts (2:00-2:20)
 - When to verify
 - How to verify
- Daily Forecasting operations (2:20-2:45)
- Contest (2:45-3:00)
- Evaluation

Why Forecast Air Quality?

- Protect public health
 - Allows public to plan activities to avoid exposure

- Allows sensitive individuals to plan activities and healthcare
- Effectively run an emissions reduction program.
 - Participation depends on forecast accuracy and timeliness
 - Affects public's activities
 - Affects sponsor or donor agency support
- Conduct special sampling.
 - Allow sufficient time to prepare monitoring equipment and personnel.
 - Sample pre-episode conditions

Process of Developing a Forecasting Program

- More forecasting tools = better results
 - "No silver bullet"
 - Based on the National Weather Service's method of weather forecasting
 - Several tools provide a consensus forecast
- Understanding how the system works:
 - Determine how meteorological processes influence air pollution in your area
 - Forecast the processes that affect air quality, then predict the air quality

Predicting weather (and air quality) requires examining information for several different spatial and time scales.

Global

Space: 4,000 km – 20,000 km

Time: 1 - 2 weeks

Synoptic

Space: 400 km - 4,000 km

Time: 1 day – 1 week

Mesoscale

Space: 10 km - 400 km

Time: 1 hr – 1 day

Urban

Space: 5 km - 50 km

Time: 1 hr - 4 hr

Neighborhood

Space: 500 m - 5 km Time: 1 min – 1 hr

- Predict weather's effect on
 - Emissions
 - Chemistry (ozone formation)
 - Pollutant transport and dispersion

Forecasting Process

•

What to forecast?

- Focus on AQI
- AQI composed of
 - Ozone
 - Particulate Matter (2.5)
 - Carbon Monoxide
 - Nitrogen Dioxide
 - Sulfur Dioxide
- Forecast for
 - Hourly site values?
 - Maximum at each site?
 - Regional maximum?
 - Specific AQI value or AQI category?

Additional resources, see EPA forecasting guidance document

Summary

Forecasting air quality requires understanding the physical and chemical processes that influence pollutant concentrations.

- Next Steps
 - Overview of Air Quality (Chemistry and Emissions)
 - Meteorological Processes
- Questions

This page is intentionally blank.